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Abstract

The heat ¯ux in steady heat conduction through cylinders whose cross-section has an inner or an outer contour in

the form of a regular polygon or a circle is considered. To calculate the shape factor the temperature ®eld is determined.

Three cases are considered: (a) temperature ®eld for hollow prismatic cylinders bounded by isothermal inner circles and

outer regular polygons, (b) temperature ®eld for hollow prismatic cylinders bounded by isothermal inner regular

polygons and outer circles, (c) temperature ®eld for hollow prismatic cylinders bounded by isothermal inner and outer

regular polygons. The boundary collocation method in the least squares sense for solving appropriate boundary value

problems is used. By means of nonlinear approximation (Marquardt method), for the three considered geometry cases,

the simple analytical formulas for the shape factors are proposed. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Solid shells of a regular shaped cross-section, where

inner and outer boundaries have di�erent but constant

temperatures ®nd use in many industry processes. For

heat transfer purposes it is of interest to know the heat

¯ow rate through the walls of shells. A very e�cient way

to calculate the heat transfer in these cases is the use of

the shape factor, probably ®rst introduced by Langmuir

[1]. Consider the cross-section where the two boundaries

Ci and Co possess two di�erent but constant tempera-

tures Ti and To (see Figs. 1, 3 and 5). The steady-state

heat transfer rate per unit length, Ql can be expressed as:

Ql � kS�To ÿ Ti�; �1�
where S is LangmuirÕs shape factor, de®ned as

S �
Z

C

oH
on

dC; �2�

whereas H is dimensionless temperature, de®ned as

H � T ÿ To

Ti ÿ To

: �3�

Once S is known for a two-dimensional shape with

constant heat conductivity and each boundary at uni-

form temperature, the total heat ¯ow may be easily

calculated by the use of Eq. (1).

The subject of this paper are the simple analytical

formulas for the shape factors for cylinders whose cross-

section has an inner or an outer contour in the form of a

regular polygon or a circle. Such subject in literature is

not new. An extensive review of papers published before

1972 related with formulas not only for shape factor, but

also for geometry with regular polygons, one can ®nd

this in [2]. Taking into account the shape factor for

domains with regular polygonal shapes, ®rst of all in the

book on heat transfer (for e.g. [3], p. 75) one can ®nd

shape factor for cross-section bounded by two circles in

the form

S � 2p

ln 1
Ecc

� � : �4�

This formula can be considered as the shape factor

for limited case when number of polygonal sides L (in-

ner or outer boundary) tends to in®nity.
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Several papers have been published on the determi-

nation of shape factors for more complicated cross-

sections possessing regular polygons [4±8]. Empirical

correlation for the arrangements of two concentric

squares or a circle within the centre of a square is given

by Smith et al. [4] in the form

S � 2:79

ln 1
Ecp

� �
� 0:036

: �5�

They used electrical and thermal analogy and made ex-

periments on the electrical ¯ow through paper with

constant conductivity. Because of the used method this

formula possesses limited accuracy and has rather his-

torical meaning.

Other workers developed approximate analytical so-

lutions of the shape factor for hollow prismatic cylinders

bounded by inner circles and outer regular polygons.

Balcerzak and Raynor [5] based their solution obtained

by point matching on the outer boundary, and have

proposed the following formula:

S � 2p

ln 1
Ecp cos p

L

� �
ÿ V

; �6�

where constant V is the function of number of polygonal

sides L, and is given in Table 1.

Laura and Susemihl [6] have considered the same

case of cross-section using conformal mapping in the

solution of appropriate boundary value problem. They

obtained the following formula:

S � 2p

ln V
Ecp

� � ; �7�

where constant V is of the function of a number of

polygonal sides L, and is given in Table 2. Formulas (6)

and (7) give nearly identical results which are accurate

only up to Ecp, i.e, about 0.8.

Nomenclature

a outer radius (m)

b inner radius (m)

A;B;C;D;Ak ;Bk ;Ck ;Dk ; kk

integral constants in general solution (14)

BCMLSS

abbreviation of the boundary collocation

method in the least squares sense

Ecc ratio of the inner radius of a tube to its outer

radius

Ecp ratio of the inner radius of circular boudary b

to the radius of the inscribed circle in regular

polygonal outer boundary a

Epc ratio of the radius of the circumscribed circle

on inner regular polygonal boundary b to the

radius of outer circular boundary a

Epp ratio of the radius of the circumscribed circle

on inner regular polygonal boundary b to the

radius of circumscribed circle on outer regular

polygonal boundary a

Fj right-hand vector in a system of linear equa-

tions resulting from simple collocation

Gjk matrix in a system of linear equation resulting

from simple collocation

Hjk matrix in a system of linear equations result-

ing from collocation in the least squares sense

k1; k2; and k3

coe�cients in formula (83)

L number of polygonal sides

n unit vector perpendicular to a surface (m)

Pj right-hand vector in a system of linear equa-

tions resulting from collocation in the least

squares sense

Ql heat ¯ow per unit length (W/m)

r polar coordinate (m)

R nondimensional polar coordinate

S shape factor (Eq. (1))

SBCM abbreviation of the simple boundary colloca-

tion method

T temperature (K)

x Cartesian coordinate (m)

X nondimensional Cartesian coordinate

Yk unknowns in linear systems

Greek symbols

C contour of boundary

k thermal conductivity (W/(m K))

h angle coordinate

H dimensionless temperature

Subscripts

i inner boundary

o outer boundary

Table 1

Values of constant V in formula (6)

L V

3 0.569580

4 0.270795

5 0.160686

6 0.106695

7 0.077607

8 0.056985

9 0.044160

10 0.035380
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For the same geometry (for hollow prismatic cylin-

ders bounded by inner circles and outer regular poly-

gons) Simeza and Yovanovich [7] using the Ôparallel ¯ux

tubeÕ heat ¯ow model have obtained the following for-

mula for the shape factor:

S � 2L
1

V
��������������������
V 2 � 0:52
p tgÿ1

��������������������
V 2 � 0:52
p

V
tg

p
L

� �" #( )
; �8�

where

V 2 � ln
1

Ecp

� �
: �9�

The last equation is valid for cylinders having both small

and large inner holes. The accuracy of the results im-

proves with the increase of a hole size. Therefore, the

expression gives accurate results for cylinders with large

holes; this is the region, where the simple formulas, that

existed before, namely (6) and (7), are inaccurate or fail.

Nickolay et al. [8] applied the method of ®nite ele-

ments and the method of ®nite di�erences to calculate

the shape factors for cross-sections bounded by con-

centric circles and squares. These numerical methods are

used to calculate the shape factors for three di�erently

shaped cross-sections. These are:

· concentric squares,

· circle within the centre of a square,

· square within the centre of a circle.

By developing the shape factor for the investigated

cross-sections analytical approximations for the shape

factor are obtained in the forms

for concentric squares

S � 8

ln 1
Epp

� �
1� 1

4
1ÿ Epp

ÿ �� � ; �10�

for a circle within the centre of a square

S � 2p
lnu� 0:07577

1:0814uÿ 1��������������������������������������������
uÿ 1� � 1:08142uÿ 1� �p ; �11�

where u � 1=Ecp;

for a square within the centre of a circle

S � 2p

ln pp
4

ÿ � ln
p ÿ 1

p ÿ ���
2
p

� �
p ÿ 1:318

0:4213
; �12�

where p � ���
2
p

=Epc.

The approximations (10)±(12) ful®ll limited cases and

are close to the exact solutions when being ®tted to the

numerical values, but unfortunately only for the case

when one boundary is square.

From the above presented review it results that in

some cases of cylinders whose cross-section has an inner

or an outer contour in the form of regular polygon or a

circle, the shape factor is known, but not for a general

case. As a consequence, the purpose of this paper is to

propose the simple analytical formulas for the shape

factors for three cases of cylinders whose cross-section

has an inner or an outer contour in the form of a regular

polygon or circle. These three cases are the following:

(a) hollow prismatic cylinders bounded by isothermal

inner circles and outer regular polygons, (b) hollow

prismatic cylinders bounded by isothermal inner regular

polygons and outer circles, (c) hollow prismatic cylin-

ders bounded by isothermal inner and outer regular

polygons. In the existing literature only the case (a) is

recognised relatively well. The boundary collocation

method in the least squares sense for solving appropriate

boundary value problems is used. By means of nonlinear

approximation (Marquardt method), for the three con-

sidered geometry cases, the simple analytical formulas

for the shape factors are obtained. A comparison of the

obtained results to the above given results of other au-

thors is presented.

2. Solution of the boundary value problem for temperature

In the considered cases the steady temperature ®eld is

governed by the two-dimensional Laplace equation. In

recent years, numerical techniques relying on computer

applications have seen the increasing use of ®nite dif-

ferences, ®nite elements, and boundary elements. These

methods, by their nature, o�er approximate solutions

only. However, these tools may prove too complex to

use in the case of the simple boundary value problem.

The time required to read the userÕs manual and to learn

the procedure of mesh generating and supplying the

input data can make these numerical method un-

reasonable to use (a sledgehammer solution to crack a

simple nut).

One of the simplest numerical method which can

be used for the solution of two-dimensional Laplace

equation is a boundary collocation method which

belongs to the family of boundary procedures. The

boundary collocation method can be summarised as

the method that consists in using the exact solutions

to the governing di�erential equation of the problem

and satisfying the given boundary conditions at a ®-

nite number of discrete points along the boundary.

An extensive review of the boundary collocation

method as used in linear continuous mechanics is

given in [9].

Table 2

Values of constant V in formula (7)

L V

3 1.13209

4 1.07870

5 1.05246

6 1.03754
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In this paper, we show the application of the

boundary collocation method for the treatment of do-

mains with regular polygonal shapes. The shape of do-

mains permits us to use special purpose trial functions

[10].

For calculation reasons, in the problem below it is

more convenient to use a polar coordinate system, in

which the two-dimensional Laplace equation has the

form

o2H
oR2
� 1

R
oH
oR
� 1

R2

o2H

oh2
� 0: �13�

When the collocation method is used for solving Eq. (13)

the general solution is adopted in the form

H R; h� � � A� B lnR� Ch� Dh lnR

�
X1
k�1

AkRkk
ÿ � BkRÿkk

�
cos kkh� �

�
X1
k�1

CkRkk
ÿ � DkRÿkk

�
sin kkh� �; �14�

where A;B;C;D;Ak ;Bk ;Ck ;Dk ; kk are unknown con-

stants.

In what follows, the application of the boundary

collocation method is demonstrated by three examples,

concerning: (a) temperature ®eld for hollow prismatic

cylinders bounded by isothermal inner circles and outer

regular polygons, (b) temperature ®eld for hollow pris-

matic cylinders bounded by isothermal inner regular

polygons and outer circles, (c) temperature ®eld for

hollow prismatic cylinders bounded by isothermal inner

and outer regular polygons.

2.1. Temperature ®eld for hollow prismatic cylinders

bounded by isothermal inner circles and outer regular

polygons

Consider a family of long hollow regular prismatic

cylinders of uniform thermal conductivity as shown in

Fig. 1. The outer boundary is a regular polygon with L

sides, while the inner boundary is a circle of radius b.

The radius of the inscribed circle on a regular polygon

is a.

The inner and outer boundaries of cylinders are

maintained at uniform temperatures Ti and To.

Since the problem is symmetric with respect to the

lines h � 0 and h � p=L, the solution of Eq. (1) can be

found only between these two lines (see Fig. 2), where L

is the number of polygon sides. The boundary con-

ditions for Eq. (13) are the following:

T � Ti for r � b; �15�

T � To for x � a; �16�

oT
oh
� 0 for h � 0; �17�

oT
oh
� 0 for h � p

L
: �18�

Let us introduce the nondimensional variables in the

form

R � r
a
; Ecp � b

a
; X � x

a
: �19�

Now, using (3), the formulation of the boundary value

problem is the following:

(a) the governing Eq. (13),

(b) the boundary conditions.

Fig. 1. Hollow prismatic cylinders bounded by isothermal inner

circles and outer regular polygons.
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H � 1 for R � Ecp; �20�

H � 0 for X � 1 or Rb � 1

cosh
; �21�

oH
oh
� 0 for h � 0; �22�

oH
oh
� 0 for h � p

L
: �23�

Some of the constants in general solution (14) can be

determined exactly.

From (22), we have

oH
oh

h� � 0� � C � D lnR�
X1
k�1

kk

�ÿ AkRkk
ÿ � BkRÿkk

�
sin kk0� �

� CkRkk
ÿ � DkRÿkk

�
cos kk0� �� � 0: �24�

The last equation will be ful®lled if

C � D � Ck � Dk � 0; k � 1; 2; . . . �25�

From (23) we have

oH
oh

h
�
� p

L

�
�
X1
k�1

kk AkRkk
ÿh � BkRÿkk

�
sin kk

p
L

� �i
� 0: �26�

Eq. (26) is satis®ed when

sin kk
p
L

� �
� 0 �27�

then

kk � kL: �28�

Substituting the obtained results into (2), yields

H � A� B lnR�
X1
k�1

AkRkL
ÿ � BkRÿkL

�
cos kLh� � �29�

Using (20) in (29) gives

1 � A� B lnEcp �
X1
k�1

AkEkL
cp

�
� BkEÿkL

cp

�
cos kLh� �: �30�

Eq. (30) is satis®ed if

A� B lnEcp � 1; �31�

AkEkL
cp � BkEÿkL

cp � 0; k � 1; 2; . . . �32�

or

A � 1ÿ B lnEcp; �33�

Bk � ÿAkE2kL
cp ; k � 1; 2; . . . �34�

After using boundary conditions (20), (22) and (23),

the solution adopts the form

H � 1� B ln
R

Ecp

�
X1
k�1

Ak RkL

 
ÿ E2kL

cp

RkL

!
cos kLh� �: �35�

Introducing new symbols

Y1 � B; Y2 � A1; Y3 � A2; �36�
Eq. (35) can be written as

H � 1� Y1 ln
R

Ecp

�
X1
k�2

Yk R kÿ1� �L
 

ÿ E2 kÿ1� �L
cp

R kÿ1� �L

!
cos L k�� ÿ 1�h�:

�37�
Solution (37) ful®ls exactly governing Eq. (1) and

boundary conditions (20), (22) and (23). Taking into

account condition (21) and using (29) we have

Y1 ln
Rb

Ecp

�
X1
k�2

Yk R kÿ1� �L
b

 
ÿ E2 kÿ1� �L

cp

R kÿ1� �L
b

!
cos L k�� ÿ 1�h� � ÿ1:

�38�
Choosing M values of angle h given by the formula

hj � tgÿ1 jÿ 1

M ÿ 1
tg

p
L

� �
; j � 1; 2; 3; . . . ;M �39�

and truncating in®nite series in (38) to N ®rst terms we

obtain a system of linear equations for unknown con-

stants YkXN

k�1

GjkYk � Fj; j � 1; 2; . . . ;M ; �40�

where

Gj1 � ln
Rbj

Ecp

; �41�

Fig. 2. Repeated element in hollow prismatic cylinders

bounded by isothermal inner circles and outer regular polygons.
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Gjk � R kÿ1� �L
bj

 
ÿ E2 kÿ1� �L

cp

R kÿ1� �L
bj

!
cos L k�� ÿ 1�hj

�
; �42�

Fj � ÿ1; �43�

Rbj � 1

coshj
: �44�

The system of linear Eq. (40) results from the sim-

plest version of the boundary collocation method in

which the number of collocation points M must be equal

to the number of unknown coe�cients N. This version is

named hereafter: simple boundary collocation method

(SBCM). As it will be shown in paragraph 4, such a

version does not guarantee good results for all values of

parameters L and Ecp. We have better results when we

use the boundary collocation method in the least squares

sense (BCMLSS). It leads to the following system of

equations for unknown coe�cients:

XN

k�1

HjkYk � Pj; j � 1; 2; . . . ;N ; �45�

where

Hij �
XM

k�1

GkiGkj; �46�

Pi �
XM

k�1

GkiFk : �47�

Now, the number of collocation points M can be

equal to or greater than the number of unknown coef-

®cients N (M P N).

2.2. Temperature ®eld for hollow prismatic cylinders

bounded by isothermal inner regular polygons and outer

circles

Consider a family of long hollow regular prismatic

cylinders of uniform thermal conductivity as shown in

Fig. 3. The outer boundary is a circle of radius b, while

the inner boundary is a regular polygon with L sides.

The radius of the circumscribed circle on a regular

polygon is a.

Again, since the problem is symmetrical with respect

to the lines h � 0 and h � p=L, the solution of Eq. (13)

can be found only between these two lines (see Fig. 4),

where L is the number of polygon sides. The boundary

conditions for Eq. (13) are the following:

T � Ti for x � bcos
p
L
; �48�

T � To for r � a; �49�

oT
oh
� 0 for h � 0; �50�

oT
oh
� 0 for h � p

L
: �51�

Let us introduce the nondimensional variables in the

form

R � r
a
; Ecp � b

a
; X � x

a
: �52�

Now, using (3), the formulation of the boundary value

problem is the following: the governing Eq. (13) and the

boundary conditions

H � 0 for R � 1; �53�

H � 1 for X � Epc cos
p
L

or Rb �
Epc cos p

L

cosh
; �54�

Fig. 3. Hollow prismatic cylinders bounded by isothermal inner

regular polygons and outer circles.
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oH
oh
� 0 for h � 0; �55�

oH
oh
� 0 for h � p

L
: �56�

Taking into account general solution (14) and ful-

®lling exactly boundary conditions (48), (50) and (51) in

the same way as in the previous case one has

H � B lnR�
X1
k�1

Ak RkL

�
ÿ 1

RkL

�
cos kLh� �: �57�

Introducing new symbols

Y1 � B; Y2 � A1; Y3 � A2; �58�
Eq. (52) can be written as

H � Y1 lnR�
X1
k�2

Yk R kÿ1� �L
�

ÿ 1

R kÿ1� �L

�
cos L k�� ÿ 1�h�:

�59�
Solution (54) ful®ls exactly governing Eq. (2) and

boundary conditions (48), (50) and (51). Taking into

account condition (49) we have

Y1 lnRb �
X1
k�2

Yk R kÿ1� �L
b

 
ÿ 1

R kÿ1� �L
b

!
cos L k�� ÿ 1�h�

� 1: �60�
Choosing M values of angle h given by formula (39) and

truncating in®nite series in (54) to N ®rst terms we ob-

tain a system of linear equations in the form (40) for

unknown constants Yk in which

Gj1 � lnRbj; �61�

Gjk � R kÿ1� �L
bj

 
ÿ 1

R kÿ1� �L
bj

!
cos L k�� ÿ 1�hj

�
; �62�

Fj � 1: �63�
In the case, when N � M one has the SBCM. For

boundary collocation method in the least squares sense

one can use (45)±(47) with matrix and vector given by

(56)±(58).

2.3. Temperature ®eld for hollow prismatic cylinders

bounded by isothermal inner and outer regular polygons

Consider a family of long hollow prismatic cylinders

bounded by isothermal inner and outer regular poly-

gones as shown in Fig. 5. The radius of the circum-

scribed circle on the inner regular polygon is b, whereas

on the outer polygon is a. The inner and outer bound-

aries of cylinders are maintained at uniform tempera-

tures Ti and To.

Again, since the problem is symmetrical with respect

to the lines h � 0 and h � p=L, the solution of Eq. (46)

Fig. 4. Repeated element in hollow prismatic cylinders

bounded by isothermal inner regular polygons and outer circles.

Fig. 5. Hollow prismatic cylinders bounded by isothermal inner

and outer regular polygons.
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can be found only between these two lines (see Fig. 6),

where L is the number of polygon sides. The boundary

conditions for Eq. (14) are the following:

T � Ti for x � bcos
p
L
; �64�

T � To for x � acos
p
L
; �65�

oT
oh
� 0 for h � 0; �66�

oT
oh
� 0 for h � p

L
: �67�

Let us introduce the nondimensional variables in the

form

R � r
a
; Epp � b

a
; X � x

a
: �68�

Now the formulation of the boundary value problem

is the following:

(a) the governing Eq. (13),

(b) the boundary conditions.

H � 1 for X � Epp cos
p
L
; �69�

H � 0 for X � cos
p
L
; �70�

oH
oh
� 0 for h � 0; �71�

oH
oh
� 0 for h � p

L
: �72�

Taking into account general solution (14) and ful-

®lling exactly boundary conditions (71) and (72) in the

same way as in the previous case one has

H � A� B lnR�
X1
k�1

AkRkL
ÿ � BkRÿkL

�
cos kLh� �: �73�

Truncating in®nite series in (73) to the ®rst 2N terms and

introducing notations

A � Y1; A2 � Y2; A3 � Y3; . . . ; AN � YN ;

B � YN�1; B2 � YN�2; B3 � YN�3; . . . ; BN � Y2N

�74�

one has

H �
X2N

k�1

Ykuk R; h; L� �; �75�

where

u1 � 1;

uk � R kÿ1� �L cos k�� ÿ 1�Lh� for k � 2; 3; . . . ;N ;

uN�1 � lnR; �76�

uk � Rÿ kÿNÿ1� �L cos k�� ÿ N ÿ 1�Lh�
for k � N � 2;N � 3; . . . ; 2N :

Introducing the collocation points given by

Rb1j �
Epp cos p

L

coshj
;

Rb2j �
cos p

L

coshj
;

where hj is given by (39), one has the system of linear

equations in the following form:

X2N

k�1

GjkYk � Fj; j � 1; 2; . . . ; 2M ; �77�

where

Gjk � uk Rb1k ; hk ; L� �; �78�

GN�j;N�k � uN�k Rb2j; hj; L
ÿ �

; �79�

Fk � 1:0; �80�

Fk�N � 0: �81�

Now again, in the case when N � M one has the SBCM.

For boundary collocation method in the least squares

sense one can use (45)±(47) with matrix and vector given

by (78)±(81).

Fig. 6. Repeated element in hollow prismatic cylinders

bounded by isothermal inner and outer regular polygons.
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Table 3

Values of shape factor S for hollow prismatic cylinders bounded by isothermal inner circles and outer regular polygons according to

Fig. 1a

Ecp L S ERL ELG

0.10 3 2.5892417837 0:10224� 10ÿ3 0:26085� 10ÿ8

0.10 4 2.6418293009 0:20945� 10ÿ6 0:12045� 10ÿ13

0.10 5 2.6694659434 0:14482� 10ÿ3 0:14653� 10ÿ8

0.10 6 2.6857476185 0:25221� 10ÿ3 0:37600� 10ÿ8

0.10 8 2.7031680163 0:31068� 10ÿ3 0:44294� 10ÿ8

0.10 10 2.7118023127 0:28538� 10ÿ3 0:30832� 10ÿ8

0.10 16 2.7217688063 0:20507� 10ÿ3 0:76080� 10ÿ9

0.10 32 2.7269250701 0:77953� 10ÿ4 0:46865� 10ÿ10

0.10 Circle 2.7287528013 ± ±

0.20 3 3.6245639717 0:14330� 10ÿ3 0:51252� 10ÿ8

0.20 4 3.7284525350 0:29577� 10ÿ6 0:24020� 10ÿ13

0.20 5 3.7837372069 0:20527� 10ÿ3 0:29438� 10ÿ8

0.20 6 3.8165315639 0:35840� 10ÿ3 0:75928� 10ÿ8

0.20 8 3.8518054114 0:44270� 10ÿ3 0:89936� 10ÿ8

0.20 10 3.8693603554 0:40720� 10ÿ3 0:62771� 10ÿ8

0.20 16 3.8896833143 0:29306� 10ÿ3 0:15538� 10ÿ8

0.20 32 3.9002226886 0:11149� 10ÿ3 0:95870� 10ÿ10

0.20 Circle 3.9039626764 ± ±

0.30 3 4.7312803635 0:18944� 10ÿ3 0:89787� 10ÿ8

0.30 4 4.9097637284 0:39486� 10ÿ6 0:42890� 10ÿ13

0.30 5 5.0060779483 0:27158� 10ÿ3 0:51531� 10ÿ8

0.30 6 5.0636441648 0:47551� 10ÿ3 0:13366� 10ÿ7

0.30 8 5.1259250419 0:58915� 10ÿ3 0:15928� 10ÿ7

0.30 10 5.1570615962 0:54272� 10ÿ3 0:11150� 10ÿ7

0.30 16 5.1932253440 0:39127� 10ÿ3 0:27698� 10ÿ8

0.30 32 5.2120295832 0:14899� 10ÿ3 0:17121� 10ÿ9

0.30 Circle 5.2187106443 ± ±

0.40 3 6.0403996037 0:25736� 10ÿ3 0:16759� 10ÿ7

0.40 4 6.3336147525 0:57434� 10ÿ6 0:92124� 10ÿ13

0.40 5 6.4947316743 0:35232� 10ÿ3 0:86727� 10ÿ8

0.40 6 6.5919495086 0:61903� 10ÿ3 0:22651� 10ÿ7

0.40 8 6.6978912107 0:76983� 10ÿ3 0:27195� 10ÿ7

0.40 10 6.7511525323 0:71049� 10ÿ3 0:19109� 10ÿ7

0.40 16 6.8132633966 0:51332� 10ÿ3 0:47675� 10ÿ8

0.40 32 6.8456662538 0:19569� 10ÿ3 0:29535� 10ÿ9

0.40 Circle 6.8571964832 ± ±

0.50 3 7.6944300913 0:39639� 10ÿ3 0:41029� 10ÿ7

0.50 4 8.1724712686 0:12058� 10ÿ5 0:42505� 10ÿ12

0.50 5 8.4420455222 0:45779� 10ÿ3 0:14642� 10ÿ7

0.50 6 8.6069274206 0:80819� 10ÿ3 0:38609� 10ÿ7

0.50 8 8.7884026183 0:10101� 10ÿ2 0:46820� 10ÿ7

0.50 10 8.8803271117 0:93458� 10ÿ3 0:33064� 10ÿ7

0.50 16 8.9881056247 0:67717� 10ÿ3 0:82970� 10ÿ8

0.50 32 9.0445824146 0:25855� 10ÿ3 0:51557� 10ÿ9

0.50 Circle 9.0647205359 ± ±

0.60 3 9.9260297930 0:75982� 10ÿ3 0:15883� 10ÿ6

0.60 4 10.7181846200 0:40527� 10ÿ5 0:50312� 10ÿ11

0.60 5 11.1823645782 0:60513� 10ÿ3 0:25581� 10ÿ7

0.60 6 11.4724411603 0:10765� 10ÿ2 0:68499� 10ÿ7

0.60 8 11.7967989139 0:13558� 10ÿ2 0:84347� 10ÿ7

0.60 10 11.9629998640 0:12590� 10ÿ2 0:60003� 10ÿ7

0.60 16 12.1594193027 0:91608� 10ÿ3 0:15185� 10ÿ7

0.60 32 12.2630109133 0:35055� 10ÿ3 0:94777� 10ÿ9

0.60 Circle 12.3000602915 ± ±
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3. Shape factors

For all the considered cases of geometry the shape

factor de®ned by (2), after some calculations, can be

expressed as:

S �
Z

C

oH
on

dC � ÿ
Z 2p

0

oH
oR

R dh � ÿ2pY1: �82�

The last result means that only coe�cient Y1 at the

logarithmic term is responsible for the shape factor. On

the other hand the coe�cients Yk obtained from Eqs.

(40), (45), or (77), respectively are functions of four

parameters: L; E; N ; M , where E is de®ned in an ap-

propriate way for each case. The ®rst two parameters

have physical meaning, while the other two (N, M) result

from the chosen numerical method. In the next section,

it will be shown that parameters N and M, after

reasonable choice, have practically marginal in¯uence

on the shape factor.

An example of calculated values of shape the factor

according to formula (82) is presented in Table 3. These

values can be used to calculate the heat ¯ow according

to Eq. (1) but it is a little bit inconvenient. A better

possibility is an approximate formula, which covers all

values from Table 3. Here we propose the approximate

formula in the following form:

S� � f �L;E; k�

� 2p
ln�1=E� � lnfk1 exp k2 Lÿ k3� �� � � 1g ; �83�

where k1; k2; and k3 are appropriately chosen constants.

To determine coe�cients k1; k2; and k3 the method

of the least squares minimisation is adapted. Taking into

account values obtained by means of the boundary

collocation method (an example is given in Table 3), and

using the Marquardt method [11] for the solution of

nonlinear equations resulting from the least squares

minimisation one can obtain the results presented in

Table 4.

4. Results and conclusions

Two di�erent error criteria in the estimate of exact-

ness of the boundary collocation method in the solution

of boundary value problems have been employed. The

®rst one is based on `global' error measure for H and

given by

Table 3 (continued)

Ecp L S ERL ELG

0.70 3 13.2052694481 0:18546� 10ÿ2 0:10039� 10ÿ5

0.70 4 14.5734159748 0:17139� 10ÿ4 0:92693� 10ÿ10

0.70 5 15.4214667694 0:82676� 10ÿ3 0:47727� 10ÿ7

0.70 6 15.9705681529 0:14921� 10ÿ2 0:13160� 10ÿ6

0.70 8 16.6022454901 0:19064� 10ÿ2 0:16675� 10ÿ6

0.70 10 16.9328087961 0:17818� 10ÿ2 0:12017� 10ÿ6

0.70 16 17.3289384805 0:13055� 10ÿ2 0:30842� 10ÿ7

0.70 32 17.5401025858 0:50139� 10ÿ3 0:19390� 10ÿ8

0.70 Circle 17.6159982326 ± ±

0.80 3 18.7353581558 0:58079� 10ÿ2 0:10543� 10ÿ4

0.80 4 21.3062946852 0:89455� 10ÿ4 0:26608� 10ÿ8

0.80 5 23.0356625040 0:11909� 10ÿ2 0:98794� 10ÿ7

0.80 6 24.2232845716 0:22150� 10ÿ2 0:28999� 10ÿ6

0.80 8 25.6653644633 0:29238� 10ÿ2 0:39216� 10ÿ6

0.80 10 26.4546863315 0:27758� 10ÿ2 0:29158� 10ÿ6

0.80 16 27.4313266797 0:20662� 10ÿ2 0:77265� 10ÿ7

0.80 32 27.9641865514 0:79935� 10ÿ3 0:49287� 10ÿ8

0.80 Circle 28.1575957029 ± ±

0.90 3 31.2585633122 0:27783� 10ÿ1 0:27529� 10ÿ3

0.90 4 37.1852486539 0:98922� 10ÿ3 0:38887� 10ÿ6

0.90 5 41.6921039904 0:18335� 10ÿ2 0:22334� 10ÿ6

0.90 6 45.1220719865 0:37069� 10ÿ2 0:81032� 10ÿ6

0.90 8 49.7760507303 0:53395� 10ÿ2 0:13071� 10ÿ5

0.90 10 52.6136499028 0:53350� 10ÿ2 0:10762� 10ÿ5

0.90 16 56.4813122579 0:42239� 10ÿ2 0:32308� 10ÿ6

0.90 32 58.7742191736 0:16797� 10ÿ2 0:21768� 10ÿ7

0.90 Circle 59.6350906505 ± ±

a Number of series terms in Eq. (45) N� 6. Number of collocation points M� 20.
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ERG � 1

NP

XNP

i�1

He Ri; hi� �� ÿHa Ri; hi� ��2: �84�

The subscripts e and a above refer to the exact value

resulting from the boundary conditions and approxi-

mate solution obtained by the boundary collocation

method. Points Ri; hi� � at which an error is evaluated are

uniformly distributed over a part of the boundary,

where the boundary condition is ful®lled approximately.

NP is the number of nodes at that boundary (in calcu-

lations NP� 1000 was taken).

The second error criterion has a local character and is

de®ned by

ERL � max He Rb; hb� �j ÿHa Rb; hb� �j; �85�
where Rb; hb are coordinates of the boundary, where the

boundary condition is ful®lled approximately. In the

boundary collocation method the local criterion is a

maximum error of the method because for the elliptic

problem the maximum error occurs on the boundary

[12].

The proposed determination of the shape factor is

based on the solution of the appropriate boundary value

problem. The analytical±numerical method has been

used for the solution of this boundary value problem. In

this method the governing equation and boundary

condition at some part of the boundary are satis®ed

exactly. Only the boundary condition at the remaining

part of the boundary is satis®ed approximately by means

of boundary collocation method. In preliminary calcu-

lations two di�erent methods of boundary collocation

have been used. In the ®rst one ± the SBCM, the

boundary condition is satis®ed in the ®nite number of

collocation points exactly. In such version the number of

terms in the series in the assumed form of the solution is

equal to the number of collocation points at the above

mentioned remaining part of boundary. In the second

case ± the BCMLSS, the boundary condition is ful®lled

in the least squares sense in some number of points

greater than the number of terms in series. In prelimi-

nary calculations both methods have been used. When

we use the SBCM, it can be seen intuitively that in-

creasing the number of collocation points leads to more

exact results. It is true, but not for all cases. Among

others, Table 5 illustrates the case when maximal error

Table 4

Values of coe�cients k1; k2; and k3 in formula (83)

Hollow prismatic cylinders bounded

by isothermal inner circles and outer

regular polygons

Hollow prismatic cylinders bounded

by isothermal inner regular polygons

and outer circles

Hollow prismatic cylinders bounded

by isothermal inner and outer

regular polygons

k1 0.1267244657714413 0.5381454843892344 )0.0669303436356801

k2 )0.3476423728952475 )0.2902395077433192 )0.3010864083155045

k3 2.6537510672908366 0.0315201822595446 )0.9220961055481248

Table 5

Values of maximal error ERL and shape factor S ± numbers in brackets, versus number of collocation points M and number of terms

in series N for L� 3a

N Ecp � 0:8 Ecp � 0:85 Ecp � 0:9

SBCM M�N BCMLSS

M� 20

SBCM M�N BCMLSS

M� 20

SBCM M�N BCMLSS

M � 20

3 0.1388 (19.14) 0.05525 (18.69) 0.2200 (24.32) 0.08959 (23.22) 0.4034 (33.75) 0.1684 (30.34)

4 0.07483 (18.77) 0.02279 (18.73) 0.1325 (23.53) 0.03823 (23.38) 0.2738 (31.72) 0.07824 (31.04)

5 0.05141 (18.74) 0.1003 (23.43) 0.2327 (31.37)

6 0.03927 (18.73) 0.005808 (18.73) 0.083393 (23.41) 0.01175 (23.41) 0.2197 (31.27) 0.02778 (31.26)

7 0.03167 (18.73) 0.07433 (23.41) 0.2245 (31.26)

8 0.02646 (18.73) 0.003673 (18.73) 0.06861 (23.41) 0.008848 (23.41) 0.2343 (31.26) 0.02677 (31.26)

10 0.01998 (18.73) 0.006141 (18.73) 0.6425 (23.41) 0.008848 (23.41) 0.2916 (31.26) 0.07360 (31.26)

12 0.01637 (18.73) 0.02119 (18.73) 0.06608 (23.41) 0.08133 (23.41) 0.3999 (31.26) 0.4557 (31.26)

15 0.01359 (18.73) 0.07750 (23.41) 0.7181 (31.26)

20 0.01217 (18.73) 11.98 (18.80) 0.1215 (23.41) 59.94 (23.79) 2.226 (31.26) 442.4 (34.45)

25 0.01230 (18.73) 0.2141 (23.41) 8.128 (31.25)

a Hollow prismatic cylinders bounded by isothermal inner circles and outer regular polygons.
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increases if the number of collocation points increases

for the SBCM (see values of ERL for Ecp � 0:9). We

cannot observe such phenomena when we use the

BCMLSS. Numerical results from Table 5 indicate that

the BCMLSS is very e�cient, with 3 to 4 ®gures accu-

racy achievable for the shape factor by solving fewer

than eight linear equations.

On the base presented of the results one can

conclude that the BCMLSS is an ideal method for

solving two-dimensional potential boundary value

problems whose boundaries have regular polygonal

shapes. It has the advantage of giving a solution in an

explicit formula for potential (temperature) and for

integral characteristic (shape factors), unlike the tra-

ditional numerical methods such as the FEM and the

FDM when solution is given in number of points.

The only numerical matter in the application of this

method is the Gauss elimination procedure for cal-

culation of the expansion coe�cients related with a

given problem.

As it was shown in Section 1, there are a few for-

mulas for the shape factor given by other authors. The

comparison of the results obtained on the base of these

formulas to the results proposed in this paper are given

in Tables 6±8. On the base of these comparisons one can

give the following conclusions:

1. The proposed formula (83) for cross-section with reg-

ular polygonal shapes is the most general among the

existing ones. Formulas given by other authors are

good in some regions given in Section 1.

Table 6

Comparison of the results of the shape factor for a circle within the centre of a square (L� 4)

Ecp Smith et al.

[4]

Balcerzak and

Raynor [5]

Laura and

Susemilh [6]

Simeza et al.

[7]

Nickolay et al.

[8]

Our formula

(83)

0.10 2.69305 2.64181 2.64183 2.62786 2.64273 2.64183

0.15 3.24453 3.18475 3.18478 3.16527 3.18659 3.18478

0.20 3.79607 3.72841 3.72846 3.70280 3.73162 3.72845

0.25 4.37263 4.29745 4.29751 4.26492 4.30263 4.29750

0.30 4.99214 4.90969 4.90978 4.86930 4.91774 4.90976

0.35 5.67152 5.58207 5.58218 5.53277 5.59425 5.58218

0.40 6.42946 6.33341 6.33355 6.27408 6.35162 6.33361

0.45 7.28864 7.18665 7.18683 7.11620 7.21374 7.18709

0.50 8.27819 8.17138 8.17162 8.08908 8.21181 8.17247

0.55 9.43724 9.32755 9.32786 9.23353 9.38845 9.33033

0.60 10.82030 10.71112 10.71152 10.60764 10.80435 10.71819

0.65 12.50635 12.40360 12.40414 12.29794 12.54987 12.42135

0.70 14.61483 14.52916 14.52990 14.44026 14.76677 14.57342

0.75 17.33579 17.28711 17.28816 17.26274 17.69243 17.39816

0.80 20.99165 21.01947 21.02102 21.18472 21.76104 21.30630

0.85 26.17726 26.36698 26.36942 27.08480 27.87461 27.15810

0.90 34.12531 34.68706 34.69129 37.23823 38.33590 37.18525

Table 7

Comparison of the results of the shape factor given in literature for hollow prismatic cylinders bounded by isothermal inner circles and

outer regular polygons

L Ecp Sinth et al.

[4]

Balcerzak and

Raynor [5]

Laura and

Sumemihl [6]

Simeza and

Yovanovich [7]

Our formula

(83)

3 0.3 4.73295 4.73118 4.68739 4.73128

4 0.3 4.99214 4.90969 4.90978 4.86930 4.90976

5 0.3 5.00563 5.00611 4.97627 5.00608

6 0.3 5.06251 5.06372 5.04228 5.06364

3 0.5 7.69325 7.68856 7.62854 7.69443

4 0.5 8.27819 8.17138 8.17162 8.08908 8.17247

5 0.5 8.44064 8.44199 8.37307 8.44205

6 0.5 8.60365 8.60711 8.55421 8.60693
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2. The results given by formula (83) are in good agree-

ments with the results given by the existing formulas

in a region where they are valid.

The purpose of this paper is to propose the simple

analytical formula for the shape factor (formula (83)).

This formula has been obtained by means of Marquardt

method for the solution of the nonlinear approximation

problem. The comparison of values of the shape factor

obtained by means of the boundary collocation method

Scol and given by the proposed approximate formula (83)

Sappr for hollow prismatic cylinders bounded by iso-

thermal inner regular polygons and outer circles is given

in Fig. 7. One can observe that di�erences between `ex-

act' values of the shape factor and the approximate one

are not essential from the engineering point of view.
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